
Identification of Druggable Binding sites in
Ras Proteins using TACTICS

�WF Yl� T§¤ ±� X�C ���w� d§d��

�l`tl� ¢y�EC�w� ��d�tFA� x�C �Any�¤r�

¨�µ�

Rana Moqady

Supervisor: Prof. Abdallah Sayyed-Ahmad

February 2022



Identification of Druggable Binding sites in
Ras Proteins using TACTICS

�WF Yl� T§¤ ±� X�C ���w� d§d��

�l`tl� ¢y�EC�w� ��d�tFA� x�C �Any�¤r�

¨�µ�

Rana Moqady

Supervisor: Prof. Abdallah Sayyed-Ahmad

This thesis was submitted in partial fulfillment of the requirements for the Master’s

Degree in Physics from the Faculty of Graduate Studies at Birzeit University,

Palestine

February 2022



Identification of Druggable Binding sites in
Ras Proteins using TACTICS

�WF Yl� T§¤ ±� X�C ���w� d§d��

�l`tl� ¢y�EC�w� ��d�tFA� x�C �Any�¤r�

¨�µ�

Rana Moqady

Accepted by the Faculty of Graduate Studies, Birzeit University, in partial

fulfillment of the degree of Master of Physics

Thesis committee:

Abdallah Sayyed-Ahmad, Ph.D.

(Principal Advisor)

Wafaa Khater, Ph.D.

(Member)

Wael Karain, Ph.D.

(Member)

February 2022



I would like to dedicate this thesis to the pure soul of my father.



Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Abdallah

Sayyed-Ahmad for the continuous support during this study. I would also like

to thank him for his patience, providing motivation and sharing his immense

knowledge. His guidance helped me to complete this research project and

writing of this thesis. I could not have imagined having a better advisor and

mentor for my master’s study.

Finally, I would like express my very profound gratitude to my loving

family for providing me with unfailing support and continuous encouragement

throughout my years of study and throughout the process of writing this thesis.

This accomplishment would not have been possible without them. Thank you.

v



Abstract

RAS proteins belong to the small GTPase family, which is classified as an

allosteric enzyme that controls cell proliferation, differentiation, and devel-

opment. As a result of critical Ras function, Mutations of Ras proteins are

associated with (15−20)% of all human tumors. Several algorithms have been

deployed to identify druggable binding sites on the Ras surface. In this work,

we used a novel machine learning algorithm developed to identify druggable

binding sites by analyzing MD simulations called TACTICS. Using TACTICS,

we were able to robustly identify the known four cryptic Ras binding sites and

investigate their presence in three K-Ras Mutants: G12D, G12DSOH/G12D,

and pT32/G12D. Our results suggest that pocket p3 ( residues: 107-111,

137,139) exists in all systems with a prominent appearance in pT32/G12D,

where it occurs in the most different conformations. The appearance of p3 in

three systems indicates that it is a druggable pocket. Pocket p4 (residues: 17,

21, 29, 31, 35) was most prominent in the G12D, while pocket p2 (residues:

61-65,92,99) in the oxidized G12DSOH/G12D counterpart.
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Chapter 1: Introduction

Cancers are devastating diseases that affect the lives of millions of people around

the world. They are caused by an uncontrolled growth of abnormal cells and

dynamic alterations in the genome (which causes precancerous features in normal

cells). The development of cancer impairs the normal biological process of healthy

cells, invading nearby tissues and spreading them to distant tissues[1, 2]. In multi-

cellular organisms, cellular behavior is controlled by a complex network of signaling

pathways that regulates cell proliferation differentiation and growth. Mutations in

genes that modulate these signaling pathways are thought to be one of the main

causes of cancers[3, 4].

Ras small GTPase family of genes is frequently mutated in approximately

30% of all human tumors [5]. It was discovered in the 1960s as a viral component

that caused the formation of sarcomas in rats [2, 4]. These proteins act as binary

molecular switches controlling cell signaling pathways involved in cell division,

proliferation, and development. There are three human Ras proteins: N-Ras, H-

Ras, and K-Ras. Thyroid and bladder cancers are caused by mutations in H-Ras;

Colorectal, 35 % lung, and 95 % pancreatic cancers are caused by mutations in K-

Ras; 15% of melanoma is caused by mutations in N-Ras. Overall, K-Ras mutations

in amino acids G12, G13, Q61 are observed in 85% of Ras-related cancers [4, 6–9].

Here, we are interested in K-Ras which consists of a catalytic domain (residues 1-

0



166), a membrane-binding region (residues 167 − 189), and a farnesyl anchor. The

conserved catalytic domain includes six beta-strands, which make up the protein

core, and is surrounded by five alpha-helices. The membrane binding region is not

conserved and has notable sequence differences between Ras isoforms.

The catalytic domain of Ras interacts with effectors and exchange factors

by modulating the conformations of two flexible canonical switches: switch 1 (SI:

residues 30 − 38) and switch 2 (SII: residues 60 − 76) (see Figure 1.1). When Ras

is bound to the nucleotide guanosine diphosphate (GDP), it becomes in the inactive

"off state", and when it is bound to the nucleotide guanosine triphosphate (GTP),

it becomes in the active "on state". In the active state Ras binds and activate its

effector proteins such as RAF Kinesis, P13K, and RaLGDs. Ras enhanced activity

by GTPase-activating proteins (GAPs) accelerates Ras inactivation. The exchange

of the bound nucleotide GDP into GTP is facilitated by guanine nucleotide exchange

factors (GEFs)[5, 10–13]. Therefore, developing K-Ras inhibitors is crucial to treat

these fatal cancers.

Structure-based drug design is a complex process that includes many

steps[14]. In this thesis, we focus on finding druggable cryptic binding sites on the

surface of proteins. There are many methods used to identify drug binding sites. For

example, FTMAP uses an energy mapping algorithm and a fast Fourier transform

(FFT) correlation approach to identify druggable binding sites as "hot spots" by

taking one PDB file as input. FTMAP searches the protein surface for regions that

bind to a subset of 16 small organic probe molecules. By incorporating detailed

energy expressions on grids, FTMAP allows us to locate low-energy probe clusters.

Overlapping clusters of different probes are called consensus sites (CSs). FTMAP

was applied to different proteins and yielded ligand binding sites found from NMR

and X-ray crystallography techniques [15–18].
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Figure 1.1: The sequence and structure of the G12D K-Ras. (A) The sequence of the amino acids
of the catalytic domain (amino acids 1-166, three mutation sites are highlighted in green) and HVR
(amino acids 167-189, are highlighted in red). (B) The structure is shown in cartoon representation.
Switches SI and SII are colored yellow and magenta, respectively.

To identify druggable binding sites on K-RAS, Grant et al. [19] used

FTMAP along with AutoLigand and BlindDock. AutoLigand determines the op-

timal ligand volume, shape, and atom type depending on the receptor properties.

Therefore, regions of high affinity can be linked through low-affinity regions with

the contiguous envelope technique. This should work as long as the affinity of the
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volume is optimized [20]. A blind docking was performed using small molecules

known to bind Ras. Essentially, this approach states that ligands will target a specific

site if it offers an energetic or steric advantage over any other site [21]. These meth-

ods have been used to find four previously discovered sites as well as new sites. Three

pockets, displaying low and high occupancy, were identified by FMAP (p1,p2,p3),

and a new pocket called p3b was identified by AutoLigand. p3b is adjacent to p3

but is shallower and smaller than it. Hence it cannot be found by FTMAP or blind

docking. They also discovered p3 and p4 through blind docking and found that p3

is the most frequently targeted pocket.

Another similar approach to FTMAP is pMD (probe-based solvent molec-

ular dynamics simulation) which can detect druggable binding sites in soluble pro-

teins using probe molecules as part of the solvent environment of an MD simulation.

This includes cryptic pockets manifested through an induced-fit mechanism. pMD

can be considered as the computational equivalent of multi solvent crystallography

[22], and fragment-based NMR spectroscopy [23, 24]. This technique considers

protein motion directly during the druggable site identification process. It identi-

fies druggable pockets and their maximum affinity [6] by measuring binding free

energy between the protein and probe molecules, thus reducing false positives [6,

25, 26]. Furthermore, pMD is distinct from other methods as it does not use sur-

face descriptors and does not rely on a training set. Prakash et al. [6] used pMD

to identify interaction hotspots on the surface of oncogenic K-Ras G12D. They

identified five druggable sites and three sub-sites. Two sub-sites are classified as

part of p1 and p4 pockets, while three druggable sites overlap with p1, p2, and

p3 pockets. Furthermore, pMD yielded additional reactive surfaces that could be

protein-protein and protein-membrane interaction surfaces. Prakash et al. [27]

expanded the scope of pMD to include membrane-bound proteins by modifying

the Lennard-Jones (LJ) pairwise nonbonded interactions between selected atoms

3



of the probe and lipid preventing probe partitioning into a bilayer. Two different

modes of membrane-bound orientations of oncogenic G12D and G13D K-Ras were

studied and yielded the binding sites that are solvent accessible and not the one oc-

cluded by membrane[27]. Sayyed-Ahmad et al.[28] extended the pMD-membrane

method by incorporating seven chemically diverse probe types. They also estab-

lished a method to quantify the density of probes on protein surfaces and construct

surface topography maps based on the probe-binding affinity of surface residues

to exclude high probe-density spots that do not have pocket-like geometrical char-

acteristics. They also studied oncogenic G12D, G12V and G13D K-Ras mutants

in two different membrane orientations. The results robustly identified previously

characterized allosteric druggable sites and other reactive surface regions. Finally,

Capra et al. [29] developed ConCavity and compared it to both conservation-based

and structure-based methods using precision-recall (PR) curves and the Jaccard co-

efficients. It was found that the ability of structure-based methods to identify ligand

binding sites decreases as the number of chains in the structure increases. When

there are more than five chains in a protein, conservation alone is more effective

than structure-based approaches, and the ConCavity method, which takes advantage

of this complementary information, performs very well when there are more than

five chains in the protein. Despite ConCavity’s excellent performance, some kinds

of proteins, such as the ActR protein, did not perform as well. These poor results

are due in large part to misleading information about the evolutionary conservation

of sequences and ligands binding completely outside well-defined concave surface

pockets [29].

In this thesis, we will utilize TACTICS [9] (Trajectory-based Analysis

of Conformations to Identify Cryptic Sites) to investigate the binding sites on the

surface of three K-Ras variants (G12D, pT32/G12D and C118SOH/G12D). This

analysis technique is designed to predict new binding sites based on a complex

4



machine learning algorithm that utilizes an extended CryptoSite training dataset to

analyze the physicochemical properties and geometry of input structures extracted

from molecular dynamics trajectories. This approach is more comprehensive than

other methods such as ConCavity [29], LIGSITE [30], COACH [31], FTMAP [15],

and FPocket [32].This is because they use a single structure as input data limiting

their ability to find cryptic sites that are not present in all conformations. It is also

more robust than pMD as it utilizes CryptoSite training set as has been demonstrated

to be robust in finding druggable pockets in three different proteins: SARS-CoV-2

main protease and methyltransferase and the Yersinia pestis aryl carrier protein.
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Chapter 2: Methods

2.1 Molecular Dynamics (MD) simulation

Molecular dynamics is a widely spread computer simulation technique used to

analyze protein structure and function. It is also indispensable tool in structural

drug design. It is based on applying Newtonian dynamics by measuring the force

and acceleration experienced by every atom in a molecular assembly to study their

time evolution and hence calculate their equilibrium physicochemical properties.

The time evolution of each atom trajectory is obtained by solving

𝑚𝑖
𝑑2 ®𝑟𝑖
𝑑𝑡2

= −∇𝑖𝑉( ®𝑟1, ®𝑟2, ......, ®𝑟𝑁 ) (2.1)

Where 𝑚𝑖 is the mass of each atom (𝑖) at position (𝑟𝑖) in the system, and 𝑉 is The

potential energy. Some of the commonly used packages for molecular dynamics

(MD) simulation of biomolecules are GROMACS, AMBER, and NAMD [33, 34].

In this thesis, we studied three K-Ras variant systems (G12D, pT32/G12D

and C118SOH/G12D). The MD simulations of the studied systems have been car-

ried out in previous studies[35, 36] using a standard protocol as follows: All three

systems were started from the high-resolution crystal structure of G12D K-Ras

(PDB ID: 4DSO). The phosphorylated G12D K-Ras variant (pT32/G12D) was con-
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structed by mutating Tyr32 to pTyr32, while the oxidized G12D K-Ras variant

(C118SOH/G12D) was constructed using CHARMM (CGenFF) [37, 38] by convert-

ing Cys-SH to Cys-SOH. The force field parameters for cysteine sulfenic acid (SOH)

were obtained from [39]. The bound guanosine-diphosphate-monothiophosphate

(GSP) was removed and replaced with guanosine triphosphate (GTP). All other co-

crystals were also removed except for Mg 2+ ion. By using the PROPKA program,

the protonation state of each amino acid residue was predicted[40]. For C118SOH

it could be deprotonated (Cys-SO - ) because it is a weak acid. C118SOH pKa

values range from 5.9 to 7.2 in selected proteins and dipeptides, suggesting that a

significant fraction of the molecule exists in the protonated state[39]. C-terminal and

anionic residues were deprotonated, while N-terminal and cationic residues were

protonated. The resulting structures were then dissolved in a TIP3P cubic box with

a buffer spacing of 10 Å to ensure the periodic images of the protein do not interact

with the edges of the box. Additionally, (Na + ) and (Cl−) ions were added to the

solvated systems to neutralize and maintain physiological ion concentrations (0.15

M).

For MD simulation runs, an initial conjugate gradient approach was ap-

plied with 5000 steps to minimize the system. Using a harmonic force constant

(𝑘 = 4.0𝑘𝑐𝑎𝑙/𝑚𝑜𝑙Å2), the system was heated from (0 − 310)𝐾 , constrained pro-

teins, and GTP heavy atoms, and removed slowly at a fixed pressure. NPT ensemble

with periodic boundary conditions and a 2.0 𝑓 𝑠 run time along with the SHAKE

algorithm for constrained covalent bonds including hydrogen atoms.was also used.

In addition, PME methods [41], have been used with a grid density of about 1/Å,

between 10 Å and 12 Å, the unbound interactions gradually and smoothly close,

and the cutoff occurs at 14Å. NPT (𝑇 = 310𝐾, 𝑃 = 1.0𝑎𝑡𝑚) simulation, which is

consistent with experiments. Langevin dynamics [42] was utilized to regulate tem-

perature and pressure with a damping coefficient of 10 𝑝𝑠−1. Finally, to maintain

7



constant pressure, the Nose Hoover Langevin piston method [43] was used with a

piston period of 200 𝑓 𝑠 and a decay time interval of 100 𝑓 𝑠.

2.2 Trajectory-based Analysis of Conformations to

Identify Cryptic Sites (TACTICS)

In this thesis, we aim to identify potential binding sites on the surface of three K-Ras

variants and determine the differences between them. We utilized TACTICS[9], a

recently developed trajectory-based analysis of MD conformations, to achieve this

goal. TACTICS starts by using K-means clustering to select frames from the overall

conformational heterogeneity of MD simulation data. It then identifies possible

druggable sites in each conformation and integrated these conformational data into

a random forest model based on each conformation protein motion and geometry.

Finally, TACTICS uses fragment docking to score residues in identified binding

pockets. In the following subsections we shed more light on the details of the

various stages of TACTICS approach.

2.2.1 Generating a machine learning training database

TACTICS uses a database of 11,201 crystal structures (23% of the proteome) to

train a machine learning (ML) model. Each protein in the database has both a holo-

structure (with a ligand at the cryptic site) and an apo-structure (without a ligand at

the cryptic site). For each holo-structure in the set, all apo-structures with at least

95% sequence identity available in PDB were added. In an attempt to mimic MD

trajectories in which many frames may have pockets that are different from cryptic

pockets, cryptic pockets are considered to be less hydrophobic and more flexible

than other less relevant pockets [44]. PyMOL[45] was subsequently used to select
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residues within 9.0 Å of the co-crystallized ligand to align the holo-structure with

each extended-database structure. The database was then purged of extended-site

structures containing ligands other than water or metals within 5.0 Å of the holo

ligand. There is also a variance in the number of apo structures per holo structure.

To reduce this issue, a maximum of 50 apo structures per holo-structure is used. This

does not completely eliminate the issue that proteins with fewer than 50 structures

will be undersampled.

It is worth mentioning that several apo-structures have partially or fully

open cryptic sites, making them bindable without ligands. ML models are affected

by this shortcoming. In order to reduce the impact of this shortcoming, proteins exist

in a spectrum of conformations with cryptic sites that may or may not be accessible.

Because of this, deciding whether intermediate states are bindable or unbindable

requires arbitrary decisions.

2.2.2 Construction of ML models

An ML model was constructed to identify cryptic sites that are accessible in the

input structure. It achieves this task by initially using Ligsite [30] to find out which

points near the protein are part of geometric pockets. After that, ConCavity [29]

is used to cluster these points into binding sites and assign scores to each residue

according to its location. In the ML model, the ConCavity score is calculated from

the aligned MD trajectories and reference structures. By measuring the average

ConCavity score of the residues to either side of the residue (in sequence), an ML

model can detect the number of residues in each druggable cryptic pocket containing

more than one residue.

20% of the data was used as testing data, which was used for evaluating

the model performance, but not for training the model. The number of true and false
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positives varies because of the confidence threshold that the model applies to classify

an item as True. To quantify the performance of the ML model, by calculating the

receiver operating characteristic (ROC), which is a graph of true positive rate versus

false positive rate, as well as AUROC (area under receiver operating characteristic),

applied in TACTICS. The rest 80% of the data was used to train a random forest

model by using Scikit-learn [46].

2.3 Integrating the ML model into a larger algorithm

To reduce the number of false positives of the ML model, the ML model is incorpo-

rated into a multi-step procedure:

• TACTICS algorithm begins with using MD analysis [47, 48] to apply k-means

clustering on the aligned MD trajectory.

• ML is then applied to the centroid of each cluster. Thus, the ML model

predicts the probability of a residue’s presence in a cryptic site.

• A set of predicted binding regions are assigned according to predicted proba-

bilities that are compared with a user-specified threshold to reduce the number

of false positives. The algorithm yields no predictions if the standard devi-

ation of ML scores among all clusters of the trajectory is less than a certain

threshold.

• Finally, fragment docking (AutoDock Vina) is used to investigate which pre-

dicted pockets are potentially druggable. The “dock score” for each residue

in Cryptosite is a calculation based on how many docked fragment ligands are

within 3.5 Å distance as shown in figure 2.1.

The TACTICS output is displayed using pyMOL[45], where the ML high

score residues appear as black or wight sticks, and fragment docking scores appear as

10



Figure 2.1: TACTICS methods scheme (describing the TACTICS algorithm)

B-factor putty. High confidence TACTICS predictions are obtained when residues

with high ML scores are in the same region as those with high docking scores as

shown in Figure 2.2.
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Figure 2.2: A visualization of TACTICS output in PyMOL. ML predictions are shown as black
sticks. Fragment docking predictions are stored as B-factor values and shown in putty representation.
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Chapter 3: Results

In this work, we applied TACTICS on three different K-Ras variants, G12D,

C118SOH/G12D, and pT32/G12D, to identify potential druggable binding sites on

the protein surface. In the following sections, first we will show how we calibrated

different TACTICS parameters, then we will present our results and predictions for

each K-Ras variant.

3.1 Calibration of TACTICS Parameters

To begin with, for TACTICS to work properly, protein trajectory should be aligned

using CA atoms. All residue names must also be one of the standard amino acids,

and every residue must have an alpha carbon(CA). Atoms that do not meet these

requirements are deleted. Additionally, the first amino acids should have chain

A[9]. Since K-Ras has a bound nucleotide and we are not interested in including the

nucleotide-binding pocket as a prediction, all nucleotide atom names are replaced

by CA.

There are three adjustable parameters in TACTICS that need to be carefully

assigned. These include the number of clusters (𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠), machine learning score

minimum (𝜖𝑚𝑙), and threshold and maximum frame-to-frame standard deviation

(𝜎𝑚𝑙). 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 determines the number of conformations sampled from the frames

of the aligned MD trajectory. It usually ranges from 3 to 15. 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 also limits the
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number of TACTICS predictions. However, if pocket-less frames are present, the

number of TACTICS predictions will be less than 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠. 𝜖𝑚𝑙 is the minimum ML

score required to cluster residues into binding sites for each frame. It ranges from

0.5 to 0.9. 𝜎𝑚𝑙 is the maximum frame-to-frame standard deviation residue scores

must have when clustering residues into binding sites. This means that residues

that are assigned in few frames, will be discarded [9]. Choosing these parameters

is important to detect binding pockets accurately. Using large values will yield no

results while choosing small values will yield spurious results. In this study, we

used 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 10, 𝜖𝑚𝑙 = 0.6, 𝜎𝑚𝑙 = 0.1875. T

Figure 3.1: Pocket detection as a function of 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 . Pocket p4 appears in the G12D variant
(black circles), while pocket p2 appears in C118SOH/G12D variant (red squares).

To make sure that our choice of TACTICS parameters is optimal, a sys-

tematic sensitivity study of the three parameters was carried out to determine their

effect on the detection of K-Ras binding pockets in the two variants G12D and
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C118SOH/G12D. Figure 3.1 suggests that the number of clusters does not affect

the detection of pocket p2 in C118SOH/G12D and pocket p4 in G12D. This is rea-

sonable as the number of known binding sites on the surface of K-Ras is not large.

Based on this analysis, we chose an optimal 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 value of 10.

Figure 3.2: Pocket detection as a function 𝜖𝑚𝑙 . Pocket p4 appears in the G12D variant (black circles),
while pocket p2 appears in C118SOH/G12D variant (red squares).

Figure 3.2 shows that 𝜖𝑚𝑙 significantly affect the detection of pocket p2 in

C118SOH/G12D and pocket p4 in G12D. It is clear that 𝜖𝑚𝑙 values below 0.7 can

detect both pocket p4 in C118SOH/G12D and p2 in G12D. To avoid having false

positive detection, we chose an optimal 𝜖𝑚𝑙 of 0.6.

Finally, Figure 3.3 shows that 𝜎𝑚𝑙 also affect the detection of pocket

p2 in C118SOH/G12D and pocket p4 in G12D. It is clear that 𝜎𝑚𝑙 values below

approximately 0.2 can detect pocket p4 in G12D, while values below approximately

0.32 can detect p2 in C118SOH/G12D. To detect both pockets and avoid having
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Figure 3.3: Pocket detection as a function 𝜎𝑚𝑙 . Pocket p4 appears in the G12D variant (black
circles), while pocket p2 appears in C118SOH/G12D variant (red squares).

false positive detection, we chose an optimal 𝜎𝑚𝑙 of 0.1875.

3.2 Analysis of Binding Sites in G12D K-Ras variant

Mutations in the Ras protein occur in three regions: the P loop (phosphate-

binding loop, residues 10-17) and the switch regions: SI (residues 30-38) and

SII (residues 60-76). In addition, SI and SII undergo large conformational changes

upon GDP/GTP exchange or state 1/state 2. Conformational changes between the

two states indicate a common mechanistic basis inherent in the high flexibility of

the switch regions. Shima et al[49] investigated different Ras mutations such as

H-RasT35S-GppNHP to clarify the mechanism of state transitions. H-RasT35S has
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Cluster p1 p2 p3 p4
1 NA NA 109, 111 NA
2 NA NA NA 29, 31 35
3 NA NA NA 21, 31, 35
4 71 NA NA 29, 31, 35, 57
5 NA NA NA 29, 31, 35
6 NA NA 106, 109, 110 17, 35, 57
7 NA NA NA 17,31
8 72 60 NA NA

Table 3.1: TACTICS predictions for residues as part of a binding site for each conformational cluster
of G12D variant.

a reduced affinity for Ras effector proteins without Thr35 being involved in any

interactions [49, 50].

The 31P NMR spectra of H-RasT35S-GppNHP showed that SI is shifted

away from the guanine nucleotide and conformational instability of the SI loop and

this is because of the loss of the direct and Mg+2-coordinated indirect interactions

between Thr35 of H-Ras and the 𝛾-phosphate of GppNHp, and revealed two surface

pockets (pocket p1 and pocket p2) in state 1, which are absent in state 2. Shima et

al [49] found that the transition from state 2 to state 1 is required for the dissocia-

tion of the two loops(SI and SII) of GppNHP. Namely, by dissociating The35 and

Gly60 from the phosphate resulting in heavy hydrogen-exhausting bond network

transitions. For the studied transition from state 1 to state 2, they used the crystal

structure M-RasP40D-GppNHp, which requires the binding of Thr45 and Gly70

to𝛾-phosphate. Further studies of Ras state transitions will improve our ability to

develop drugs targeting Ras proteins and other small GTPases[11, 49, 51].

Our TACTICS analysis showed that optimal parameters yield the presence

of pocket p4 (see Figure 3.4, residues: 17, 21, 29, 31, 35) in many conformational

clusters of the G12D variant. Pocket p3 (see Figure 3.5), residue: 106, 109-111)

were also present. However, pockets p1 and p2 were not detected at all (see table 3.1).
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Figure 3.4: A) TACTICS predictions of G12D binding site residues are shown as B factor putty
obtained from fragment docking and black sticks obtained from machine learning. B) Pocket p4 is
shown as a red surface, while the protein is displayed as a cartoon. C) The same as with transparent
protein surface overlay.

This suggests that for the non-oxidized G12D variant pocket p4 can be selectively

targeted.
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Figure 3.5: A) TACTICS predictions of G12D binding site residues are shown as B factor putty
obtained from fragment docking and black sticks obtained from machine learning. B) Pocket p3 is
shown as a green surface, while the protein is displayed as a cartoon. C) The same as with transparent
protein surface overlay.

3.3 Analysis of Binding Sites in oxidized C118SOH/G12D

K-Ras variant

There are many studies investigating the implications of oxidation of Cysteine118

in the three isoforms of Ras protein (N-Ras, K-Ras,H-Ras) as well as the change in

dynamics, structural, and conformational properties of the nucleotide-binding sites.

A recent MD study [36] suggested that switch SI and SII are more dynamic in the

oxidized C118SOH/G12D variant.This increase in flexibility could facilitate GEF
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Cluster p1 p2 p3 p4
1 NA NA 110, 109, 139 NA
2 NA 60-65,99 NA NA
3 67 61 NA NA
4 67,71 61,62 NA NA
5 67 60-66, 92 NA NA
6 NA NA 109,110, 137 NA
7 67, 71 61-65 NA NA
8 N/A 61, 62 NA NA
9 NA NA NA NA

Table 3.2: TACTICS predictions for residues as part of a binding site for each conformational cluster
of C118SOH/G12D variant.

binding and/or transmission between active and inactive states.

Our TACTICS analysis with optimal parameters showed the presence of

pocket p2 in many conformational clusters of the C118SOH/G12D variants (see

Figure 3.6, residues: 61-65,92,99). It also showed the presence of pocket p3 (see

Figure 3.7, residues: 107-110, 137-139), but to a lesser extent than p2. Only two

residues (residue: 67,71) that belong to pocket p1 appeared and no residues of

pocket p4 were detected ( see table3.2). These results suggest that in the oxidized

C118SOH/G12D variant switch SII region is more dynamic than that of G12D.

These results suggest pocket p2 might be the more suitable target to inhibit the

active oxidized variant. Some known putative drugs that bind to these pockets are

reported in the literature [19].

3.4 Analysis of Binding Sites in phosphorylated pT32/G12D

K-Ras variant

Many studies have indicated that Tyr32 influences the GTPase activity and effector

binding by altering the conformation of Ras protein, and these studies have demon-

strated that the change in Tyr32 orientation is associated with the effect on canonical
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Figure 3.6: A) TACTICS predictions of C118SOH/G12D binding site residues are shown as B factor
putty obtained from fragment docking and black sticks obtained from machine learning. B) Pocket
p2 is shown as a yellow surface, while the protein is displayed as a cartoon. C) The same as with
transparent protein surface overlay.

switches, as well as the consequent possibility of determining the active and inactive

conformation of Ras protein[52–54].

The Tyr32 residue can be phosphorylation via scr-protein tyrosine phos-

phate. This phosphorylation state induces conformational changes in switch regions

due to the additional electrostatic repulsion between the negatively charged Asp38

and Asp57 residues within the nucleotide-binding site. It most likely traps K-Ras

into an inactive GTP-bound state and hence decreases its affinity towards effector
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Figure 3.7: A) TACTICS predictions of C118SOH/G12D binding site residues are shown as B factor
putty obtained from fragment docking and black sticks obtained from machine learning. B) Pocket
p3 is shown as a green surface, while the protein is displayed as a cartoon. C) The same as with
transparent protein surface overlay.

protein Raf. Dephosphorylation Tyr32 via SHP2 protein tyrosine phosphate con-

versely enhances Raf binding. This suggests that the phosphorylation state of Tyr32

influences the GTPase cycle. As a result, disrupting the balance between these

processes may have adverse functional effects that lead to cancer [55, 56].

MD simulations were used to examine the structural and dynamical

changes caused by the phosphorylation of Tyr32 in G12D-K-Ras [35]. These sim-

ulations indicate that the switch SI region is more flexible in pT32/G12D than its
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Cluster p1 p2 p3 p4
1 NA NA 107-109 NA
2 NA NA 164 N/A
3 NA NA 107-109, 137-139, 162, 164 36, 57
4 NA NA 107-09, 137, 139 N/A
5 NA NA 101, 107-111, 137-139 N/A
6 NA NA 107-111, 137, 139 N/A
7 NA NA NA NA
8 54,55 NA NA NA
9 NA NA 109,110, 138, 139 NA

Table 3.3: TACTICS predictions for residues as part of a binding site for each conformational cluster
of pT32/G12D variant.

dephosphorylated counterpart, whilst the switch SII has a reduced degree of flexi-

bility. This suggests the phosphorylation process affects the binding of Ras with its

effectors.

Similar to the previous systems, we used the same parameters to identify

the druggable binding sites in pT32/G12D variant. It also showed the presence of

pocket p3 (see Figure 3.8, residues: 107-110, 137-139). Only two residues(see

Figure 3.9, residues: 67,71) that belong to pocket p1 appeared and no residues of

pocket p4 were detected. Residues 54 and 55 which are part of pocket p1 rarely

appeared. There were also rare occurrences of residues 46 and 49) which belong to

𝛽2 and 𝛽3 strands, respectively.
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Figure 3.8: A) TACTICS predictions of pT32/G12D binding site residues are shown as B factor
putty obtained from fragment docking and black sticks obtained from machine learning. B) Pocket
p3 is shown as a green surface, while the protein is displayed as a cartoon. C) The same as with
transparent protein surface overlay.
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Figure 3.9: A) TACTICS predictions of pT32/G12D binding site residues are shown as B factor
putty obtained from fragment docking and black sticks obtained from machine learning. B) Pocket
p1 is shown as a pink surface, while the protein is displayed as a cartoon. C) The same as with
transparent protein surface overlay.
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Chapter 4: Conclusions

The aim of this thesis was to identify drug-binding sites in proteins utilizing MD

simulation data. This is done using a novel approach that combines machine learning

and a complex algorithm called TACTICS. As a starting point, K-means clustering

was applied to select frames, and a random forest model was developed for each

conformation to predict potential binding residues. Finally, fragment docking was

used to investigate which predicted pockets could be druggable. Accurate predictions

are made when a high ML score is in the same region as a residue with a high docking

score is obtained [9].

K-Ras protein is one of the small GTPase proteins. It is related to major

biological functions in the human body, such as controlling the growth, proliferation,

differentiation, and apoptosis of cells. As a result of that, any mutation in the K-Ras

protein can lead to cancer. One of the frequent mutations in K-Ras protein is G12D,

which causes different types of cancer, including pancreatic cancer. Recently, several

approaches have been developed for finding proteins’ druggable binding sites with

the aim of developing an effective drug. For this aim, we applied TACTICS to three

different types of K-Ras variants: G12D, C118SOH/G12D and pT32/G12D.

TACTICS has shown that K-Ras pocket p3 exists in the three systems,

with a particular appearance in pT32/G12D, where it occurs in many different MD

sampled conformations. The ubiquitous appearance of p3 indicates that it is a major
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druggable pocket. Pocket p4 was most prominent in G12D variant, while pocket

p2 appeared in the C118SOH/G12D variant system. These results demonstrate

the robustness of TACTICS in identifying previously identified K-Ras binding sites

and its ability to differentiate between their appearance in different K-Ras variants.
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Appendix A:

For TACTICS to work properly, the protein trajectory should be aligned using CA

atoms. All residue names must also be one of the standard amino acids, and every

residue must have an alpha carbon (CA). Atoms that do not meet these requirements

are deleted. Additionally, the first amino acids should have chain A. To do that open

the PDB file for the G12D K-Ras variant on the terminal using this command:

• $ nano KG12D.pdb

• $ sed ’s/MET B/MET A/’ KG12D.pdb

Then change the chain name to chain A manually, and do the same for

the phosphorylated pT32/G12D K-Ras variant and oxidized C118SOH/G12DK-Ras

variant.

Sometimes we need to change the orientation of the protein structure to

show the pockets by using the VMD program:

• - set sel [atomselect top "all"]

• - set com [measure center $sel weight mass ]

• - set matrix [transaxis x -180]

• $ sel moveby [vecscale -1.0 $ com]

• $ sel move $ matrix

• $ sel moveby $ com
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